Paper-Based Triboelectric Nanogenerators Made of Stretchable Interlocking Kirigami Patterns


The development of stretchable energy generation devices is indispensable for achieving stretchable, self-powered electronic systems. In this paper, a type of highly stretchable triboelectric nanogenerators made from conventional, inelastic materials such as paper is presented. It exploits a rationally designed interlocking kirigami structure and is capable of harvesting energy from various types of motions such as stretching, pressing, and twisting owing to the shape-adaptive thin film design. Energy harvested from the as-fabricated devices has been used for powering an LCD screen and lighting LED arrays. Furthermore, the paper-based devices have also been demonstrated for self-powered acceleration sensing and self-powered sensing of book opening and closing. This work introduces traditional kirigami into the development of stretchable triboelectric nanogenerators and verifies its promising applications in both power generation and self-powered sensing.